non-abelian, soluble, monomial
Aliases: C22⋊D45, C15.1S4, C3.(C5⋊S4), C5⋊(C3.S4), C3.A4⋊D5, (C2×C6).D15, (C2×C10)⋊2D9, (C2×C30).1S3, (C5×C3.A4)⋊1C2, SmallGroup(360,41)
Series: Derived ►Chief ►Lower central ►Upper central
C5×C3.A4 — C22⋊D45 |
Generators and relations for C22⋊D45
G = < a,b,c,d | a2=b2=c45=d2=1, cac-1=ab=ba, dad=b, cbc-1=dbd=a, dcd=c-1 >
(1 84)(3 86)(4 87)(6 89)(7 90)(9 47)(10 48)(12 50)(13 51)(15 53)(16 54)(18 56)(19 57)(21 59)(22 60)(24 62)(25 63)(27 65)(28 66)(30 68)(31 69)(33 71)(34 72)(36 74)(37 75)(39 77)(40 78)(42 80)(43 81)(45 83)
(1 84)(2 85)(4 87)(5 88)(7 90)(8 46)(10 48)(11 49)(13 51)(14 52)(16 54)(17 55)(19 57)(20 58)(22 60)(23 61)(25 63)(26 64)(28 66)(29 67)(31 69)(32 70)(34 72)(35 73)(37 75)(38 76)(40 78)(41 79)(43 81)(44 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 84)(2 83)(3 82)(4 81)(5 80)(6 79)(7 78)(8 77)(9 76)(10 75)(11 74)(12 73)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 90)(41 89)(42 88)(43 87)(44 86)(45 85)
G:=sub<Sym(90)| (1,84)(3,86)(4,87)(6,89)(7,90)(9,47)(10,48)(12,50)(13,51)(15,53)(16,54)(18,56)(19,57)(21,59)(22,60)(24,62)(25,63)(27,65)(28,66)(30,68)(31,69)(33,71)(34,72)(36,74)(37,75)(39,77)(40,78)(42,80)(43,81)(45,83), (1,84)(2,85)(4,87)(5,88)(7,90)(8,46)(10,48)(11,49)(13,51)(14,52)(16,54)(17,55)(19,57)(20,58)(22,60)(23,61)(25,63)(26,64)(28,66)(29,67)(31,69)(32,70)(34,72)(35,73)(37,75)(38,76)(40,78)(41,79)(43,81)(44,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)>;
G:=Group( (1,84)(3,86)(4,87)(6,89)(7,90)(9,47)(10,48)(12,50)(13,51)(15,53)(16,54)(18,56)(19,57)(21,59)(22,60)(24,62)(25,63)(27,65)(28,66)(30,68)(31,69)(33,71)(34,72)(36,74)(37,75)(39,77)(40,78)(42,80)(43,81)(45,83), (1,84)(2,85)(4,87)(5,88)(7,90)(8,46)(10,48)(11,49)(13,51)(14,52)(16,54)(17,55)(19,57)(20,58)(22,60)(23,61)(25,63)(26,64)(28,66)(29,67)(31,69)(32,70)(34,72)(35,73)(37,75)(38,76)(40,78)(41,79)(43,81)(44,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85) );
G=PermutationGroup([[(1,84),(3,86),(4,87),(6,89),(7,90),(9,47),(10,48),(12,50),(13,51),(15,53),(16,54),(18,56),(19,57),(21,59),(22,60),(24,62),(25,63),(27,65),(28,66),(30,68),(31,69),(33,71),(34,72),(36,74),(37,75),(39,77),(40,78),(42,80),(43,81),(45,83)], [(1,84),(2,85),(4,87),(5,88),(7,90),(8,46),(10,48),(11,49),(13,51),(14,52),(16,54),(17,55),(19,57),(20,58),(22,60),(23,61),(25,63),(26,64),(28,66),(29,67),(31,69),(32,70),(34,72),(35,73),(37,75),(38,76),(40,78),(41,79),(43,81),(44,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,84),(2,83),(3,82),(4,81),(5,80),(6,79),(7,78),(8,77),(9,76),(10,75),(11,74),(12,73),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,90),(41,89),(42,88),(43,87),(44,86),(45,85)]])
33 conjugacy classes
class | 1 | 2A | 2B | 3 | 4 | 5A | 5B | 6 | 9A | 9B | 9C | 10A | 10B | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | 45A | ··· | 45L |
order | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 9 | 9 | 9 | 10 | 10 | 15 | 15 | 15 | 15 | 30 | 30 | 30 | 30 | 45 | ··· | 45 |
size | 1 | 3 | 90 | 2 | 90 | 2 | 2 | 6 | 8 | 8 | 8 | 6 | 6 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | ··· | 8 |
33 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | S3 | D5 | D9 | D15 | D45 | S4 | C3.S4 | C5⋊S4 | C22⋊D45 |
kernel | C22⋊D45 | C5×C3.A4 | C2×C30 | C3.A4 | C2×C10 | C2×C6 | C22 | C15 | C5 | C3 | C1 |
# reps | 1 | 1 | 1 | 2 | 3 | 4 | 12 | 2 | 1 | 2 | 4 |
Matrix representation of C22⋊D45 ►in GL7(𝔽181)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 180 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 180 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 180 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 180 |
177 | 131 | 0 | 0 | 0 | 0 | 0 |
50 | 127 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 166 | 84 | 0 | 0 | 0 |
0 | 0 | 23 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
44 | 62 | 0 | 0 | 0 | 0 | 0 |
106 | 137 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 71 | 148 | 0 | 0 | 0 |
0 | 0 | 54 | 110 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(7,GF(181))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,180,0,0,0,0,0,0,0,180,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,180,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,180],[177,50,0,0,0,0,0,131,127,0,0,0,0,0,0,0,166,23,0,0,0,0,0,84,28,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[44,106,0,0,0,0,0,62,137,0,0,0,0,0,0,0,71,54,0,0,0,0,0,148,110,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C22⋊D45 in GAP, Magma, Sage, TeX
C_2^2\rtimes D_{45}
% in TeX
G:=Group("C2^2:D45");
// GroupNames label
G:=SmallGroup(360,41);
// by ID
G=gap.SmallGroup(360,41);
# by ID
G:=PCGroup([6,-2,-3,-5,-3,-2,2,409,367,434,1443,5404,2710,3245,4871]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^45=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=b,c*b*c^-1=d*b*d=a,d*c*d=c^-1>;
// generators/relations
Export